SATP: A simple and scalable protocol for virtual
state channel networks

Andrew Stewart*!, Colin Kennedy', Mike Kerzhner!, George
Knee!, Matthias Geihs?, and Sebastian Stammler?

"Magmo (Consensys Mesh)
2PolyCrypt GmbH

September 28, 2022

Abstract

Virtual state channels allow peers to bootstrap existing connections
to form a state channel network. We present Stateful Asset Transfer Pro-
tocol (SATPEI), an amalgamation of two existing state channel protocols,
Nitro and Perun, which considerately improves the practical application of
virtual state channels, evangelizing an approach of security-by-simplicity.
In special cases, we conjecture to have achieved theoretical optimal per-
formance.

1 Introduction

1.1 State channels and scaling

Among scaling techniques for distributed ledgers State Channels offer best-in-
class transaction throughput but suffer from some worst-in-class usability issues.
In the naive State Channel construction, a set of participants initiate a channel
via an on-chain transaction, transact indefinitely with one another off-chain at
speed and cost of normal network operations, and conclude their interaction
with a second on-chain transaction. The good: the costs of the two on-chain
transactions are amortized over the practically unlimited number of off-chain
transactions. The bad: off-chain interactions are limited to the specific persons
who initiated the channel, and limited to the exchange of the specific capital
lockup defined in the channel’s opening transaction. The ugly: networking
costs scale up in the square of the number of participants in a state channel,

*andrew.stewart@mesh.xyz

1Simulation of Adenosine Tri-Phosphate is a tempting backronym. ATP serves as a reason-
able analogy for state channels — both enable a burst of high-performance activity, followed by
periodic replenishing of reserves. Perun, the Norse God of lightning, is partially responsible
for getting nitrogen into mitochondria.

and channels become less responsive as the number of potential failure points
increases.

Still, use cases exist where the extremely high throughput to cost ratio of a
State Channel is a practical requirement: streaming payments in exchange for
access to a video or audio stream, SaaS access to APIs that might get hit tens
of thousands of times per day, et cetera. This need has motivated the devel-
opment of State Channel Networks, which improve on the naive construction
by allowing participants to route transactions to one another through a path of
intermediaries.

1.2 State channel preliminaries

A state channel (henceforth channel) is a container of versioned states which
are cryptographically committed to. States consist of a) an outcome; b) some
data; and c¢) some rules which govern how the outcome and data may be
updated (i.e. committed to with a greater version) by a fixed number of peers
(often two).

Commitments take the form of digital signatures on states.

Taken together, the rules and data constitute an application that is said to
run inside the channel. For example, the rules might dictate that the outcome
may only change in such a way so as to increase the assets that eventually flow
to a certain peer. In such a case, we recover a payment channel as a special
case of a state channel. An example of the more general extension would be to
encode (for example) the rules of Chess, and to have the outcome update only
to a distribution of assets fairly reflecting (for example) the current value of the
pieces on the board.

The outcome dictates how assets, initially locked into some secure ledger when
the channel is funded, will be redistributed when it is de-funded. It specifies
a number of balances, each of which allocates assets to various destinations
— which may include the channel peers, other addresses in the ledger, or other
channels. The ledger could be a blockchain such as Bitcoin or Ethereum, or
indeed another state channel (considering a channel’s outcome to constitute a
private ledger of its own).

A state channel network typically has one or more adjudicator smart con-
tracts deployed to one or more distributed ledgers or blockchains. The adju-
dicators hold assets for a graph of interconnected channels. In this work, we
concentrate on ledger channels, which are typically funded by the underly-
ing ledger, and virtual channels, which are funded by ledger channels (and
therefore exist at a higher level of abstraction). As we shall explain in further
detail, virtual channels are also typified by being funded by more than one ledger
channel, each with an overlapping but distinct set of peers.

In this work, the state channel rules consist of a function accepting an arbitrary
number of states and signatures and returning the latest single state which is

deemed to be supported by those inputs. The inputs constitute what we call
a support proof. A supported state will be accepted by the adjudication
contract — with greater versions taking precedence over lesser ones — and its
outcome can then be executed.

The chief characteristic of a state channel is that state and value may be up-
dated and transferred without affecting the underlying ledger. They achieve
this by dint of the fact that the updates are able to eventually unlock assets
on the underlying ledger at some point in the future, under mild assumptions.
Peers can readily verify this fact. Such state updates are therefore often termed
“off-chain”, and avoid some of the disadvantages of directly updating the un-
derlying ledger. For example, updating the underlying ledger typically requires
the payment of fees proportional to the computational and storage load implied
by those updates — a load known as gas in the Ethereum ecosystem. State
channels continue to be liable for costs associated with residual gas — that is,
the costs of locking and unlocking assets as well as adjudicating disputes.

For the purposes of this paper, the lifecycle of a state channel is as follows: a
channel is opened, funded, closed and de-funded. At any point, the channel
may enter a dispute.

A dispute happens when a peer wishes to force the channel to close on chain so
it may be de-funded. The peer will submit a support proof to the adjudicator
contract, which will set a timeout. The timeout allows other peers to counter the
dispute with alternative support proofs. Eventually, the channel is closed and
may be de-funded according to the latest supported state (i.e. the supported
state with the greatest version.

A State Channel Network may be theoretically secure, yet the cost to recover
funds via disputes is a large percentage of or may even exceed the total recov-
erable funds. Therefore, we introduce the informal concept of the economic
security of a protocol, which increases as the amortized gas cost to recover
funds across channels decreasesP]

1.3 Prior work

Early work on payment channel networks was done in 2016 with Lightning [2],
whose goal was to scale Bitcoin by enabling multi-hop, off-chain payments. It
involves intermediaries on the critical path of a stream of payments between two
users, placing intense demand on the liquidity provider when providing routing
services for multiple streams.

Virtual channels enable two users, Alice and Bob, to transact directly, pri-
vately, and off-chain, by leveraging existing connections to a common interme-
diary Irene. Counterfactual 3], Nitro [4] and Perun [5,[6] are existing state
channel protocols which enable virtual channels. These protocols were featured

2We promote the practice of tracking gas costs of recovery mechanisms in source code [1].

in Web3Torrent [7], a POC application designed to incentivize torrent seeders
through micropayments.

In Ref. [8] Perun improved on the worst-case time and gas-cost complexity re-

quired to resolve disputes across multiple intermediaries,. Donner [9] achieves

similar results in a UTXO-based model, and also improves on the time-complexity
required to open a virtual channel across n hops.

1.4 Our contribution

We mergeﬂ the virtual channel constructions of Perun and Nitro, developing a
protocol which more efficiently constructs a virtual channel V' involving peers
Py = Alice, P,...,P,,P,11 = Bob. V is funded via pre-existing channels L;
between P; and P;i;, which we assume to be fully-funded as a precondition
throughout this paper.

We show that V' can be securely funded via O(1) rounds by using Protocol
In special cases, we reduce this number to 2 rounds, which we conjecture to be
the minimum possible.

Observe that Donner [9] achieves similar results in a UTXO-based virtual chan-
nel construction.

Open Question 1.1. Are Protocols|3.1}3. 4| substantially different from Don-

ner?

Once opened, Alice and Bob can transact privately in V', requiring no further
participation from the intermediaries Pi,...,P,. When Alice and Bob desire
to “settle the balances”, funds are redistributed across the ledgers Lo, ..., L,
in Protocol

In case of misbehaviour, funds that have been allocated to V' can be recovered
via Protocol Its worst-case time complexity is O(1), and its worst-case
gas-cost is O(k), where k is the number of misbehaving peers.

Theorem [3.2] ensures that intermediaries’ funds are never at risk, under the
following two security assumptions:

¢ (Liveness) Any peer can successfully record transactions on the blockchain
in O(1) time.

e (Safety) Forging cryptographic signatures is infeasible.

Our focus is on carefully using appropriate primitives to specify, in plain English
and “Solidity /Typescript-inspired pseudocode”, our virtual channel protocol in

3The Solidity implementations of Perun and Nitro bear a stronger resemblance than their
theoretical specifications.

4These protocols were discovered independently from Ref. [9], and may therefore be sub-
stantially different.

© 00 O U W~

W N~

a way that facilitates easy security analysisﬁﬂ This naturally accomplishes our
main goal, which is to implement an optimized, secure virtual channel protocol
in Solidity.

Magmo and Polycrypt are jointly implementing this protocol in Go, targeting
the Filecoin Retrieval Market |[12]. We anticipate a possible network topology
involving a dense “core” of liquidity providers facilitating channels between a
large set of providers and a very large set of clients. In this topology, a low-
overhead construction of 2-intermediary virtual channels reduces the latency
experienced by users. We further anticipate using bespoke “application chan-
nels” to enable the retrieval market to use novel cryptoeconomic incentives to
reward retrieval miners.

2 On-chain protocol

2.1 Channel attributes

A channel has two key types of objects, constants and variables.

interface ChannelConsts {
peers: PublicKey[]
appDef: Address
nonce: uint
challengeDuration: uint

}

interface ChannelVars {
version: uint
isFinal: boolean
outcome: Outcome // specified in Section 2.4
appData: bytes // unspecified, parsed by custom app logic
signatures: Signature[]

The channel’s id is computed from its constants as hash(peers, appDef, nonce).
The inclusion of a nonce allows for a fixed set of peers to construct an arbitrary
number of distinct channels.

A channel state comprises its constants together with a set of variable at-
tributes:
interface ChannelState {

consts: ChannelConsts
vars: ChannelVars

When a channel dispute is being handled by the adjudicator, the following
attributes are recorded:

50ur eyes are set on a formal TLA+/equivalent specification. See [10] for successful anec-
dotes from industry and [11] for a successful anecdote from Magmo.

6We recall Grothendieck saying something along the lines of “with the correct definitions,
the proof is obvious”, but cannot find a reference.

U W N =

W N -

U W N~

interface AdjudicationState {
version: uint
outcome: Outcome
finalizationTime: uint

The adjudicator stores adjudication states in a mapping status0f, using chan-
nel ids as keys.

2.2 Applications

A support proof is an array of states, each state containing one or more sig-
natures from the channel’s peer list. The following data structure efficiently
packages this data:

interface SupportProof {

consts: ChannelConsts,
vars: ChannelVars[]

A state channel application is a smart contract implementing the following sig-
nature:

function latestSupportedState (proof: SupportProof): ChannelState

We rely on two special applications for the main results of this paper.

The variable part returned is understood by the adjudicator to be the most
recent version of the channel’s state to be supported by all peers in the channel,
even if not explicitly signed by every peer.

The most basic application, coined the consensus app, follows the following
specification:
function latestSupportedState ({const, vars}) {

require (vars.length == 1)

require (signedByEveryone (vars [0], consts.peers))
return {consts, vars: vars[0]}

In other words, the consensus application is used to ensure that all peers have
seen and agree with the unique state provided to the adjudicator. A more so-
phisticated application, used to construct virtual channels, is specified in Section
0.2

"Note that an application is free to define support in an arbitrary manner. For instance,
an application where assets flow in one direction from Alice to Bob may specify that Alice
can unilaterally support a non-final state with version 0, and Bob can unilaterally transition
from any non-final state signed by Alice to a final state, with the same outcome, signed by
Bob. Care must be taken to ensure application rules encode the fair distribution of assets.

© 00 O Ut W~

14
15
16
17
18

20
21
22

2.3 Adjudication

A state channel protocol assumes an adversarial setting. Therefore, assets de-
posited into an adjudicator contract are released only when given explicit con-
sent on the final outcome by the channel’s participants. As timeouts significantly
worsen user experience, adjudicators typically allow peers to collaboratively con-
clude a channel without delay, by supporting a state with isFinal = true and
submitting the support proof to a Conclude operation.

To protect against arbitrary behaviour among peers, an adjudicator implements
a challenge operation, enabling peers to recover funds from the channel after
a timeoutEI It is implemented according to the following specification:

function isOpen(status: AdjudicatorStatus): bool {
// the channel has no active challenge or the channel has not
// yet finalized
return status.finalizesAt == 0 || status.finalizesAt > now

}

function challenge ({consts, varsl}: SupportProof) {
let id = channelId(consts)
let adjudicatorStatus = statusO0f (id)
require (isOpen(adjudicatorStatus))

let supportedStateVars = Application.at(state.appDef).
latestSupportedState (consts, vars).vars

require (supportedStateVars.version >= adjudicatorStatus.version)
status0f (id) = {
outcome: supportedStateVars.outcome,

version: supportedStateVars.version,
finalizesAt: now + consts.challengeDuration,

Listing 1: ”Challenge”

2.4 Outcomes and Asset Management

An allocation is a data structure A(a) representing an amount a to be paid to
a destination.

A guarantee is a data structure §(x, [A, B]) representing an amount z and an
ordered list of destinations A and B.

We slightly abuse notation, and say that item.amount = x when either item =
A(z) or item = G(z, [A, B]).

8In practice, a state’s support may need to be provided over multiple blockchain transac-
tions to account for bounds on computation complexity. We ignore this detail.

0O Uk WN

An outcome is an ordered dictionary, mapping a destination to either an allo-
cation or a guarantee. E| As an example, a channel finalized with outcome

{Alice : A(a),Bob: A(b),V : §(z, [A,I])}

would allow a tokens to be withdrawn by Alice, b tokens to be withdrawn
by Bob, and z tokens to be reclaimed, using the “finalized” outcome of V.
Keys are ordered from left to right as they appear in the text: in the outcome
o={A:A(a),X : G(x,[A,I]), B : A(b)}, for instance, 0[0] is o[4], o[1] is o[X],
and o[2] is o[B].

Guarantees are reclaimed via the reclaim operation Reclaim(L, V)lEL which
follows the following specification:

function reclaim(ledgerChannelld, targetChannelId) {
let ledgerStatus = statusOf (ledgerChannelId)
let targetStatus = statusOf (targetChannelid)

require (0 < ledgerStatus.finalizesAt <= now)
require (0 < targetStatus.finalizesAt <= now)

let guarantee = ledgerStatus.outcome[targetChannelid]
require (isGuarantee (guarantee))

let [left, right] = guarantee.peers

let o_ledger = ledgerStatus.outcome
let o_target = targetStatus.outcome

o_ledger[left] += o_target [0]
o_ledger[right] += o_target[1]

delete o_ledger[targetChannelId]

status0f (ledgerChannelld) .outcome = o_ledger
}

Listing 2: ”Reclaim”

The Reclaim operation enables intermediaries in a virtual channel construction
to “partially fund” the virtual channel without risking funds, freeing them to
sign ledger channel updates in any order — this is key to securing Protocol

3 Off-chain protocols

3.1 Ledger Channels

A ledger channel is an “auxiliary channel” used as a private ledger in various
protocols. For instance, a ledger channel L may include an allocation C' : A(c)

9In practice, the order may also dictate which destinations receive priority in case the
channel is insufficiently funded.
10A gas-optimized Reclaim(X) might reclaim all reclaimable guarantees in X’s outcome.
1 This decoupling of ledger channel updates is the main contribution of Nitro protocol.

for some channel C'. In this paper, we assume as a precondition that all ledger
channels are fully-funded — each item listed in its outcome.

For simplicity of discussion, we assume that ledger channels operate under the
consensus app described in Subsection |E|

3.2 Virtual channels

Definition 3.1. A peer commits to a state s in a channel by signing s and
sending it and the resulting signature to each peer in s.consts.peers. They
then block until they have collected enough signatures sigs on s such that
{consts : s.consts, vars : {...s.vars, sigs}} is a support proof. At this point,
the state s has been committed.

A peer who has signed state s with version n and refuses to sign other states
until they hold a support proof for s is said to be blocking.

Suppose we have peers Alice = Py, P, ..., Py, P41 = Bob where:

o for i = 0,...,n, there exists a ledger channel L; between P; and Py,
running the consensus app

e Alice (Py) and Bob (P, 1) want to make (private) payments between each
other.

We can securely fund a virtual channel V' with the following protocol:
Protocol 3.1 (Opening a virtually funded channel). Round 1: Each partic-

ipant commits to a “pre-fund” state sg for V with version = 0 and outcome
{A: A(ag), B : A(by)}.

Proceed when sg is committed.

Round 2: For each i = 0,...,n, participants P; and P;;; commit an update
in L; to deduct ag from P;’s balance, by from P;;1’s balance, and include the
guarantee G; =V : G(ag + by, [P;, Pi+1]) — in L;, ap has been debited to V' by
P; and by debited by P;y;.

For example, if L;’s outcome is
{P; : A(bal;), Pi1y : A(bal}), V' : §(x,[P;, Pisq])}
it would change to
{P; : A(bal;—ag), Piy1 : A(bal,—bg), V : G(ag+bo, [Pi, Piy1]), V' : G(z, [P, Pix1])}-

Round 3: Each participant commits a “post-fund” state s; for V which is
identical to sg, besides setting version = 1.

12This choice is inefficient in the worst case, since new updates cannot be proposed until
in-flight updates are resolved. Efficient designs which achieve best-possible results even in the
worst case appear to be viable, and their practical implementation is a problem of current
research.

Ezxplanation: Round 1 enables any peer to record a predictable outcome for V'
on-chain. The application rules for V must prevent it from finalizing with any
outcome until Round 3 has terminated. Round 2 allocates funds to V, relying
on the consistency of V’s unique “finalizable” outcome to protect intermediary’s
funds.

At this point,

e each P; has x = ag+ by fewer tokens across their two ledger channels L;_
and Li

e Alice (Pp) has ap fewer tokens in Ly
e Bob (P,11) has by fewer tokens in L,

e each ledger channel has had x total tokens deduced from its allocations,
and includes a guarantee targeting the virtual channel V for amount .

Protocol [3.1) requires O(n) network overhead and O(1) time to complete across
n intermediaries. This improves on [8], and matches [9).

In a unidirectional virtual channel — one where Bob initially deposits 0 — it is
possible to entirely eliminate Round 3 from Protocol [3.1] At least in the case of
one intermediary, rounds 1 & 2 can be partially combinedH The end result is,
Bob can redeem an initial payment from Alice after two rounds. As far as we
are aware, this is state of the art. We conjecture that this achieves a theoretical
lower bound.

Conjecture 3.1. A state channel protocol requires at least two rounds to se-
curely fund a virtual channelE

Once Alice and Bob are finished the channel, they may collaboratively conclude
V', and remove the guarantees according to the following protocol.

Protocol 3.2 (Collaboratively closing a virtually funded channel). Precondi-
tion: Alice and Bob collaboratively agree to conclude V' with outcome o = {A :
A(a), B : A(b)}.

Round 1: All peers in V' commit to s¢ with version = 4 and outcome o.

Round 2: For ¢ = 0,...,n, all peers in L; commit to a state in L; which
increments version, removes the guarantee G, adds a to G.peers[0]’s balance
and adds b to G.peers[1)’s balance — in L;, a has been credited to P; by V and
b credited to Pjy.

13This is (currently) left as an exercise for the reader.

14Informally, this conjecture can be restated as follows: Suppose Alice and Irene have a
ledger channel, and Irene and Bob have a ledger channel. We do not believe there is any
way for Alice to securely convince Bob that Irene will foot the bill at the closure of a virtual
channel, without Bob seeing at least one signature from Irene. Since Alice must first ask Irene
for a signature, this necessitates at least two rounds.

10

Protocols are peer-to-peer protocols, and may break down for a multitude
of reasons. If a peer detects misbehaviouriﬂ they may take unilateral action to
reclaim funds locked up with a virtually funded channel:

Protocol 3.3 (Unilaterally reclaiming funds from V). 1. Challenge in V, if
possible, with the latest known supported state.

2. Challenge in each of L;_; and L;, precisely when there’s a possibility of
L being finalized with a guarantee V : §(z,[...]) in its outcome.

3. After timeouts (1) and (2), reclaim any guarantees in L; 1 or L; pertaining
to V.

We omit the proof of the following safety guarantee, which takes advantage of
the fact that exactly one participant has to launch a challenge for V', and only
peers “connected” to the misbehaving peer P need to challenge in their ledger
channel with P.

Theorem 3.1. Protocol 3.2 consumes O(1) gas and terminates in time

O(max(L;_;.challengeDuration, L;.challengeDuration)+V.challengeDuration).

Thus, Protocol achieves the same sad-case time-complexity as [§]. We an-
ticipate a careful implementation of Protocol will demand significantly less
gas, leading to higher economic security.

The main security guarantee we provide for this protocol states that interme-
diaries’ balances are invariant and are not locked up indefinitely in the virtual
channel. We omit the analogous statement that can be stated for the end-users
Alice and Bob.

Theorem 3.2. Let d(V,P;) be the amount debited to V from P;’s balances,
across L; and L;_y in Protocol [3.1]

Let ¢(V, P;) be the amount credited to P;’s balance from guarantees targeting V
across L; and L;_y in both Protocol[3.3 and[3.3

For allV, foralli=1,...,n, if P; follows Protocols then ¢(P;) = d(P;).
The proof relies on specific virtual channel rules described in Appendix [A] We

record the following key fact from Lemma [AT}

Lemma 3.1. Suppose V finalizes on-chain. FEitherV is finalized with version =
0 and its original outcome {A : A(ag), B : A(bo)} or it is finalized with an out-
come {A : A(a), B : A(b)}, where ag 4+ by = a +b.

Proof of Theorem[3.3

15We allow for a flexible interpretation of misbehaviour — for instance, intermediaries may
abandon Protocol @ after some timeout.

11

Case 1 (Round 1 of Protocol has not finished). In this case, P; cannot
distinguish between “V has not yet finalized” and “V will never finalize”. This
does not matter, since until Round 1 terminates, P; will never begin committing
updates in either L; or L;_; that include a guarantee targeting V.

Without P;’s signature on such an update, the consensus app guarantees there
is no risk to P;’s balances in L; or L;_1.

Case 2 (Round 1 of Protocol has finished, but Round 2 has not.). L; and
L;_1 may be both finalized on-chain, but it is out of P;’s control whether they
are finalized with guarantees targeting V. However, V has necessarily finalized
with version = 0 and therefore with outcome {A : A(ag), B : A(bp)} by Lemma
B

If L;’s outcome does not include G;, there are no funds to reclaim. Otherwise,
e P;’s balance in L; has decreased by ag in Round 2 of Protocol
e Reclaim(L;,) will increase P;’s balance in L; by ag.

Similar analysis holds for L;_.

Case 3 (Round 3 of Protocol has completed, but Round 1 of Protocol
has not finished.). Note that V is finalized at version € {1, 2,3}, and therefore
with outcome {A : a, B : b}, where a + b = ag + by by Lemma

Since P; signed V’s post-fund setup state, Round 3 and therefore Round 2 of
Protocol [3.] has completed. This implies the latest supported state held by
P; for both L; and L;_; include a guarantee targeting V. Furthermore, as
Round 1 of Protocol has not terminated, these supported states have a
greater version number than any other supported states held by anyone in their
respective channels, implying that P; can ensure that both L; and L;_; finalize
with outcomes including the guarantee targeting V' introduced in Round 2 of
Protocol B.11

Let o = status0f(L;_1).outcome. Calling Reclaim(L;_1,) mutates o on-chain,
deleting o[V], adding a to o[P;_1].amount and adding b to o[P;].amount.

Similarly, P;’s balance in L; increases by b, implying P;’s balance increases by
a+ b= ag + by across both L; and L;_1.

Case 4 (Round 1 of Protocol has finished.). In this case, V is finalized at
version = 4. The analysis is identical to Case 2.

O

12

Acknowledgement

Thanks to Julie Poole and Martin Slagorsky for clarification on terminology.

References

[1]

Magmo, “nitro-protocol/gas-benchmarks/gas.ts,” 2021. https:
//github.com/statechannels/statechannels/blob/000e7de/
packages/nitro-protocol/gas-benchmarks/gas.ts#L72-L110.

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016. https://www.bitcoinlightning.com/
bitcoin-lightning-network-whitepaper/|

J. Coleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels,” Acessed: Now, vol. 4, p. 2019, 2018. https://14.ventures/
papers/statechannels.pdf.

T. Close, “Nitro protocol.,” TACR Cryptol. ePrint Arch., vol. 2019, p. 219,
2019. https://ia.cr/2019/219.

S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment channels over cryptographic currencies.,” IACR Cryptol. ePrint
Arch., vol. 2017, p. 635, 2017. https://ia.cr/2017/635.

S. Dziembowski, S. Faust, and K. Hostdkova, “General state channel net-
works,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 18, (New York, NY, USA), pp. 949
966, Association for Computing Machinery, 2018.

S. C. contributors, “Introducing web3torrent.” blog, June 2020. https:
//blog.statechannels.org/introducing-web3torrent/.

S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostakova, “Multi-
party virtual state channels,” in Advances in Cryptology —-EUROCRYPT
2019 (Y. Ishai and V. Rijmen, eds.), (Cham), pp. 625-656, Springer Inter-
national Publishing, 2019. https://ia.cr/2019/571.

L. Aumayr, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Donner: Utxo-
based virtual channels across multiple hops.” Cryptology ePrint Archive,
Report 2021/855, 2021. https://ia.cr/2021/855.

C. Newcombe et al., “Use of formal methods at amazon web services,” 2021.
https://lamport.azurewebsites.net/tla/formal-methods-amazon.
pdf.

T. Close and A. Stewart, “Breaking state channels with tla+,” 2020.
https://blog.statechannels.org/breaking-state-channels/.

13

https://github.com/statechannels/statechannels/blob/000e7de/packages/nitro-protocol/gas-benchmarks/gas.ts#L72-L110
https://github.com/statechannels/statechannels/blob/000e7de/packages/nitro-protocol/gas-benchmarks/gas.ts#L72-L110
https://github.com/statechannels/statechannels/blob/000e7de/packages/nitro-protocol/gas-benchmarks/gas.ts#L72-L110
https://www.bitcoinlightning.com/bitcoin-lightning-network-whitepaper/
https://www.bitcoinlightning.com/bitcoin-lightning-network-whitepaper/
https://l4.ventures/papers/statechannels.pdf
https://l4.ventures/papers/statechannels.pdf
https://ia.cr/2019/219
https://ia.cr/2017/635
https://blog.statechannels.org/introducing-web3torrent/
https://blog.statechannels.org/introducing-web3torrent/
https://ia.cr/2019/571
https://ia.cr/2021/855
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://blog.statechannels.org/breaking-state-channels/

00~ O Ui W

[12] A. Stewart, “Scalable multi-hop payments for the filecoin retrieval market,”
2021. https://github.com/filecoin-project/devgrants/issues/348\

A Virtual channel rules specification

In this section, we give a specification of some simplified ”virtual channel” ap-
plication logic for the virtual channel V' in Protocol Once V is funded,
Alice and Bob wish to make payments between each other without involving
any intermediaries.

This is achieved by implementing latestSupportedState rules for V' that allow
Alice and Bob to “transition” to new states, changing V’s outcome based on
some privately exchanged information:

e The setup states are given type None.

e Alice can move from a state with type None to a state with type A, or a
state with type B to a state with type AB.

e Bob can move from a state with type None to a state with type B, or a
state with type A to a state with type AB.

We describe a simple virtual channel app, where Alice & Bob can co-sign “vouch-
ers” that can be used to update V’s outcome. Vouchers are a placeholder for
state updates of a generalized state channel. In this sense, vouchers emulate
a simple, embedded, two-party payment channel between Alice and Bob in V.
Each of Alice & Bob have a single opportunity to present the latest doubly-
signed voucher, ensuring both end-users have the opportunity to record the
status-quo on-chain. More general virtual channel rules enable Alice and Bob
to use generalized application-specific logic — prototype solidity code may be
found in the |statechannels/statechannels Github repository

interface Voucher {
virtualChannelId: bytes32,

version: uint,
alice: uint,
bob: uint,

// signatures on {virtualChannelId, version, alice, bob}
signatures: Signaturel[],

}

function requireConsensus ({consts, varsl}: SupportProof) {
require(vars.length == 1)
require (signedByAll (vars [0], consts.peers))

}

function latestSupportedState (proof: SupportProof)) {
let {comnsts, vars} = proof

16This code implements a validTransition function whose logic may be used in the imple-
mentation of a latestSupportedState function.

14

https://github.com/filecoin-project/devgrants/issues/348
https://github.com/statechannels/statechannels/blob/e95e2a7/packages/nitro-protocol/contracts/examples/EmbeddedApplication.sol

18

if (vars.at(-1).version <= 1) {
// version O is used for pre fund setup
// version 1 is used for post fund setup
requireConsensus (proof)
} else if (vars.last.version == 4) {
// version 4 is used during concluding
requireConsensus (proof)
require (vars [0].isFinal)
} else {
validateOutcomeChange (proof) ;
}
return {consts, vars: vars.at(-1)} // the last state received
}
function validateOutcomeChange ({consts, vars}) {

// Allowed named-state transitions are
// AB
// o

// None

alice = consts.peers[0]
bob = consts.peers.at(-1)

require(vars.length in [1,2,3])
let (start, challenge, response) = vars

require(start.type == None)
require (signedByAll (consts, start))

if challenge is undefined:
return start

require(start.version = 1)
require (challenge.version == 2)
if challenge.type == A {
require (signedBy (consts, challenge, alice))
} else {
require (challenge.type == B)
require(signedBy (consts, challenge, bob))
}

let voucherl = challenge.appData
require (voucherSignedByAll (voucherl, [alice, bobl))

let x = start.outcome [0].amount + start.outcome[1l].amount
// The following two requirements guarantee that intermediary’s
// funds are invariant

require (voucherl.alice + voucherl.bob == x)
require (challenge.outcome == {

15

}

FEither V is finalized at turn 0 with its original outcome {A : ag,B : by} or
every party has signed a None state with version 1, in which case peers can take
unilateral actions to ensure V' finalized with an outcome {A : a,B : b}, where
a04—b0::a—%b.

Specifically, intermediaries can ensure that o[A] 4+ o[B] are invariant by only
committing to a state with isFinal = true when it doesn’t change the value of
o[A] + o[B].

alice: voucherl.alice,
bob: voucherl.bob
B

if response is undefined:

return challenge

require(response.version == 3)
require (response.type == AB)
if challenge.type == A {

require (signedBy (consts, response,
} elseq

require (signedBy (consts, response,
}
let voucher2 = response.appData

require (voucherSignedByAll (voucher?2,

bob))

alice))

[alice,

require (voucher2.version > voucherl.version)

require (voucher2.alice + voucher2.bob == x)

require (response.outcome
alice: voucher2.alice,
bob: voucher?2.bob

B

return response

bobl))

Listing 3: Virtual Channel Rules

logic.

Lemma A.1. Suppose V finalizes on-chain.

16

These rules are designed to provide the following lemma.

These rules miss some edge cases. Notably, Alice may submit a challenge while
a signature is in flight from Bob to Alice. We take a pragmatic stance in this
case, recognizing the possibility of addressing such edge cases with more complex

B Future work

B.1 Full specification

This work glosses over depositing into and withdrawing from a channel. There
are design choices when entering and exiting a channel which have ramifications
on UX as well as gas costs.

We will write a full specification of SATP including deposits and withdrawals.

B.2 Formal verification

Most results in the theory of state channels use the Universal Composability
(UQC) framework to prove security guarantees.

We plan to explore formalizing the main results of this paper, and are consid-
ering theoretical frameworks such as UC, as well as more tangible techniques,
such as TLA+.

B.3 Partial top-ups and checkouts

An in-use virtual channel V between Alice and Bob may end up with all the
funds “at one end”. If Alice runs out of funds, it may be smoother to top up V'
rather than fund a new V'.

B.4 Reduced latency of construction.

There are modifications to the code in [Al which enable a 2-round version of
Protocol The rough idea can be found in a draft version of this spec.

17

https://www.notion.so/statechannels/Nitro-V2-Spec-adccc980d52142d29cbf7f7c7878c2bd#92223c5bb12e4ce391cdb10acff27190

	Introduction
	State channels and scaling
	State channel preliminaries
	Prior work
	Our contribution

	On-chain protocol
	Channel attributes
	Applications
	Adjudication
	Outcomes and Asset Management

	Off-chain protocols
	Ledger Channels
	Virtual channels

	Virtual channel rules specification
	Future work
	Full specification
	Formal verification
	Partial top-ups and checkouts
	Reduced latency of construction.

